*** hashfunc.c pgsql/src/backend/access/hash/hashfunc.c,v 1.53 2007/09/21 22:52:52 tgl
--- hashfunc.c_NEW32 Wed Oct 17 13:58:10 2007
***************
*** 197,230 ****
* This hash function was written by Bob Jenkins
* (bob_jenkins@burtleburtle.net), and superficially adapted
* for PostgreSQL by Neil Conway. For more information on this
! * hash function, see http://burtleburtle.net/bob/hash/doobs.html,
! * or Bob's article in Dr. Dobb's Journal, Sept. 1997.
*/
/*----------
* mix -- mix 3 32-bit values reversibly.
! * For every delta with one or two bits set, and the deltas of all three
! * high bits or all three low bits, whether the original value of a,b,c
! * is almost all zero or is uniformly distributed,
! * - If mix() is run forward or backward, at least 32 bits in a,b,c
! * have at least 1/4 probability of changing.
! * - If mix() is run forward, every bit of c will change between 1/3 and
! * 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
*----------
*/
#define mix(a,b,c) \
{ \
! a -= b; a -= c; a ^= ((c)>>13); \
! b -= c; b -= a; b ^= ((a)<<8); \
! c -= a; c -= b; c ^= ((b)>>13); \
! a -= b; a -= c; a ^= ((c)>>12); \
! b -= c; b -= a; b ^= ((a)<<16); \
! c -= a; c -= b; c ^= ((b)>>5); \
! a -= b; a -= c; a ^= ((c)>>3); \
! b -= c; b -= a; b ^= ((a)<<10); \
! c -= a; c -= b; c ^= ((b)>>15); \
}
/*
* hash_any() -- hash a variable-length key into a 32-bit value
* k : the key (the unaligned variable-length array of bytes)
--- 197,1060 ----
* This hash function was written by Bob Jenkins
* (bob_jenkins@burtleburtle.net), and superficially adapted
* for PostgreSQL by Neil Conway. For more information on this
! * hash function, see http://burtleburtle.net/bob/hash/#lookup
! * and http://burtleburtle.net/bob/hash/lookup3.txt. Further
! * information on the original version of the hash function can
! * be found in Bob's article in Dr. Dobb's Journal, Sept. 1997.
*/
+ #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
+
+ #ifndef WORS_BIGENDIAN
+ #define HASH_LITTLE_ENDIAN 1
+ #define HASH_BIG_ENDIAN 0
+ #else
+ #define HASH_LITTLE_ENDIAN 0
+ #define HASH_BIG_ENDIAN 1
+ #endif
+
/*----------
* mix -- mix 3 32-bit values reversibly.
! *
! * This is reversible, so any information in (a,b,c) before mix() is
! * still in (a,b,c) after mix().
! *
! * If four pairs of (a,b,c) inputs are run through mix(), or through
! * mix() in reverse, there are at least 32 bits of the output that
! * are sometimes the same for one pair and different for another pair.
! * This was tested for:
! * * pairs that differed by one bit, by two bits, in any combination
! * of top bits of (a,b,c), or in any combination of bottom bits of
! * (a,b,c).
! * * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
! * the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
! * is commonly produced by subtraction) look like a single 1-bit
! * difference.
! * * the base values were pseudorandom, all zero but one bit set, or
! * all zero plus a counter that starts at zero.
! *
! * Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
! * satisfy this are
! * 4 6 8 16 19 4
! * 9 15 3 18 27 15
! * 14 9 3 7 17 3
! * Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
! * for "differ" defined as + with a one-bit base and a two-bit delta. I
! * used http://burtleburtle.net/bob/hash/avalanche.html to choose
! * the operations, constants, and arrangements of the variables.
! *
! * This does not achieve avalanche. There are input bits of (a,b,c)
! * that fail to affect some output bits of (a,b,c), especially of a. The
! * most thoroughly mixed value is c, but it doesn't really even achieve
! * avalanche in c.
! *
! * This allows some parallelism. Read-after-writes are good at doubling
! * the number of bits affected, so the goal of mixing pulls in the opposite
! * direction as the goal of parallelism. I did what I could. Rotates
! * seem to cost as much as shifts on every machine I could lay my hands
! * on, and rotates are much kinder to the top and bottom bits, so I used
! * rotates.
*----------
*/
#define mix(a,b,c) \
{ \
! a -= c; a ^= rot(c, 4); c += b; \
! b -= a; b ^= rot(a, 6); a += c; \
! c -= b; c ^= rot(b, 8); b += a; \
! a -= c; a ^= rot(c,16); c += b; \
! b -= a; b ^= rot(a,19); a += c; \
! c -= b; c ^= rot(b, 4); b += a; \
}
+ /*----------
+ * final -- final mixing of 3 32-bit values (a,b,c) into c
+ *
+ * Pairs of (a,b,c) values differing in only a few bits will usually
+ * produce values of c that look totally different. This was tested for
+ * - pairs that differed by one bit, by two bits, in any combination
+ * of top bits of (a,b,c), or in any combination of bottom bits of
+ * (a,b,c).
+ * - "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
+ * the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
+ * is commonly produced by subtraction) look like a single 1-bit
+ * difference.
+ * - the base values were pseudorandom, all zero but one bit set, or
+ * all zero plus a counter that starts at zero.
+ *
+ * These constants passed:
+ * 14 11 25 16 4 14 24
+ * 12 14 25 16 4 14 24
+ * and these came close:
+ * 4 8 15 26 3 22 24
+ * 10 8 15 26 3 22 24
+ * 11 8 15 26 3 22 24
+ *----------
+ */
+ #define final(a,b,c) \
+ { \
+ c ^= b; c -= rot(b,14); \
+ a ^= c; a -= rot(c,11); \
+ b ^= a; b -= rot(a,25); \
+ c ^= b; c -= rot(b,16); \
+ a ^= c; a -= rot(c,4); \
+ b ^= a; b -= rot(a,14); \
+ c ^= b; c -= rot(b,24); \
+ }
+
+ /*----------
+ * This works on all machines. To be useful, it requires
+ * -- that the key be an array of uint32's, and
+ * -- that the length be the number of uint32's in the key
+ *
+ * The function hashword() is identical to hashlittle() on little-endian
+ * machines, and identical to hashbig() on big-endian machines,
+ * except that the length has to be measured in uint32s rather than in
+ * bytes. hashlittle() is more complicated than hashword() only because
+ * hashlittle() has to dance around fitting the key bytes into registers.
+ *----------
+ */
+ Datum
+ hashword(
+ const uint32 *k, /* the key, an array of uint32 values */
+ size_t length, /* the length of the key, in uint32s */
+ uint32 initval) /* the previous hash, or an arbitrary value */
+ {
+ uint32 a,b,c;
+
+ /* Set up the internal state */
+ a = b = c = 0xdeadbeef + (((uint32)length)<<2) + initval;
+
+ /*------------------------------------------------- handle most of the key */
+ while (length > 3)
+ {
+ a += k[0];
+ b += k[1];
+ c += k[2];
+ mix(a,b,c);
+ length -= 3;
+ k += 3;
+ }
+
+ /*------------------------------------------- handle the last 3 uint32's */
+ switch(length) /* all the case statements fall through */
+ {
+ case 3 : c+=k[2];
+ case 2 : b+=k[1];
+ case 1 : a+=k[0];
+ final(a,b,c);
+ case 0: /* case 0: nothing left to add */
+ break;
+ }
+ /*------------------------------------------------------ report the result */
+ return UInt32GetDatum(c);
+ }
+
+
+ /*----------
+ * hashword2() -- same as hashword(), but take two seeds and return two
+ * 32-bit values. pc and pb must both be nonnull, and *pc and *pb must
+ * both be initialized with seeds. If you pass in (*pb)==0, the output
+ * (*pc) will be the same as the return value from hashword().
+ *----------
+ */
+ void hashword2 (
+ const uint32 *k, /* the key, an array of uint32 values */
+ size_t length, /* the length of the key, in uint32s */
+ uint32 *pc, /* IN: seed OUT: primary hash value */
+ uint32 *pb) /* IN: more seed OUT: secondary hash value */
+ {
+ uint32 a,b,c;
+
+ /* Set up the internal state */
+ a = b = c = 0xdeadbeef + ((uint32)(length<<2)) + *pc;
+ c += *pb;
+
+ /*------------------------------------------------- handle most of the key */
+ while (length > 3)
+ {
+ a += k[0];
+ b += k[1];
+ c += k[2];
+ mix(a,b,c);
+ length -= 3;
+ k += 3;
+ }
+
+ /*------------------------------------------- handle the last 3 uint32's */
+ switch(length) /* all the case statements fall through */
+ {
+ case 3 : c+=k[2];
+ case 2 : b+=k[1];
+ case 1 : a+=k[0];
+ final(a,b,c);
+ case 0: /* case 0: nothing left to add */
+ break;
+ }
+ /*------------------------------------------------------ report the result */
+ *pc=c; *pb=b;
+ }
+
+
+ /*----------
+ * hashlittle() -- hash a variable-length key into a 32-bit value
+ * k : the key (the unaligned variable-length array of bytes)
+ * length : the length of the key, counting by bytes
+ * initval : can be any 4-byte value
+ * Returns a 32-bit value. Every bit of the key affects every bit of
+ * the return value. Two keys differing by one or two bits will have
+ * totally different hash values.
+ *
+ * The best hash table sizes are powers of 2. There is no need to do
+ * mod a prime (mod is sooo slow!). If you need less than 32 bits,
+ * use a bitmask. For example, if you need only 10 bits, do
+ * h = (h & hashmask(10));
+ * In which case, the hash table should have hashsize(10) elements.
+ *
+ * If you are hashing n strings (uint8 **)k, do it like this:
+ * for (i=0, h=0; i 12)
+ {
+ a += k[0];
+ b += k[1];
+ c += k[2];
+ mix(a,b,c);
+ length -= 12;
+ k += 3;
+ }
+
+ /*----------------------------- handle the last (probably partial) block */
+ /*
+ * "k[2]&0xffffff" actually reads beyond the end of the string, but
+ * then masks off the part it's not allowed to read. Because the
+ * string is aligned, the masked-off tail is in the same word as the
+ * rest of the string. Every machine with memory protection I've seen
+ * does it on word boundaries, so is OK with this. But VALGRIND will
+ * still catch it and complain. The masking trick does make the hash
+ * noticably faster for short strings (like English words).
+ */
+ #ifndef VALGRIND
+
+ switch(length)
+ {
+ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
+ case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
+ case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
+ case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
+ case 8 : b+=k[1]; a+=k[0]; break;
+ case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
+ case 6 : b+=k[1]&0xffff; a+=k[0]; break;
+ case 5 : b+=k[1]&0xff; a+=k[0]; break;
+ case 4 : a+=k[0]; break;
+ case 3 : a+=k[0]&0xffffff; break;
+ case 2 : a+=k[0]&0xffff; break;
+ case 1 : a+=k[0]&0xff; break;
+ case 0 : return UInt32GetDatum(c); /* zero length requires no mixing */
+ }
+
+ #else /* make valgrind happy */
+
+ k8 = (const uint8 *)k;
+ switch(length)
+ {
+ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
+ case 11: c+=((uint32)k8[10])<<16; /* fall through */
+ case 10: c+=((uint32)k8[9])<<8; /* fall through */
+ case 9 : c+=k8[8]; /* fall through */
+ case 8 : b+=k[1]; a+=k[0]; break;
+ case 7 : b+=((uint32)k8[6])<<16; /* fall through */
+ case 6 : b+=((uint32)k8[5])<<8; /* fall through */
+ case 5 : b+=k8[4]; /* fall through */
+ case 4 : a+=k[0]; break;
+ case 3 : a+=((uint32)k8[2])<<16; /* fall through */
+ case 2 : a+=((uint32)k8[1])<<8; /* fall through */
+ case 1 : a+=k8[0]; break;
+ case 0 : return UInt32GetDatum(c);
+ }
+
+ #endif /* !valgrind */
+
+ } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
+ const uint16 *k = (const uint16 *)key; /* read 16-bit chunks */
+ const uint8 *k8;
+
+ /*--------------- all but last block: aligned reads and different mixing */
+ while (length > 12)
+ {
+ a += k[0] + (((uint32)k[1])<<16);
+ b += k[2] + (((uint32)k[3])<<16);
+ c += k[4] + (((uint32)k[5])<<16);
+ mix(a,b,c);
+ length -= 12;
+ k += 6;
+ }
+
+ /*----------------------------- handle the last (probably partial) block */
+ k8 = (const uint8 *)k;
+ switch(length)
+ {
+ case 12: c+=k[4]+(((uint32)k[5])<<16);
+ b+=k[2]+(((uint32)k[3])<<16);
+ a+=k[0]+(((uint32)k[1])<<16);
+ break;
+ case 11: c+=((uint32)k8[10])<<16; /* fall through */
+ case 10: c+=k[4];
+ b+=k[2]+(((uint32)k[3])<<16);
+ a+=k[0]+(((uint32)k[1])<<16);
+ break;
+ case 9 : c+=k8[8]; /* fall through */
+ case 8 : b+=k[2]+(((uint32)k[3])<<16);
+ a+=k[0]+(((uint32)k[1])<<16);
+ break;
+ case 7 : b+=((uint32)k8[6])<<16; /* fall through */
+ case 6 : b+=k[2];
+ a+=k[0]+(((uint32)k[1])<<16);
+ break;
+ case 5 : b+=k8[4]; /* fall through */
+ case 4 : a+=k[0]+(((uint32)k[1])<<16);
+ break;
+ case 3 : a+=((uint32)k8[2])<<16; /* fall through */
+ case 2 : a+=k[0];
+ break;
+ case 1 : a+=k8[0];
+ break;
+ case 0 : return UInt32GetDatum(c); /* zero length requires no mixing */
+ }
+
+ } else { /* need to read the key one byte at a time */
+ const uint8 *k = (const uint8 *)key;
+
+ /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
+ while (length > 12)
+ {
+ a += k[0];
+ a += ((uint32)k[1])<<8;
+ a += ((uint32)k[2])<<16;
+ a += ((uint32)k[3])<<24;
+ b += k[4];
+ b += ((uint32)k[5])<<8;
+ b += ((uint32)k[6])<<16;
+ b += ((uint32)k[7])<<24;
+ c += k[8];
+ c += ((uint32)k[9])<<8;
+ c += ((uint32)k[10])<<16;
+ c += ((uint32)k[11])<<24;
+ mix(a,b,c);
+ length -= 12;
+ k += 12;
+ }
+
+ /*-------------------------------- last block: affect all 32 bits of (c) */
+ switch(length) /* all the case statements fall through */
+ {
+ case 12: c+=((uint32)k[11])<<24;
+ case 11: c+=((uint32)k[10])<<16;
+ case 10: c+=((uint32)k[9])<<8;
+ case 9 : c+=k[8];
+ case 8 : b+=((uint32)k[7])<<24;
+ case 7 : b+=((uint32)k[6])<<16;
+ case 6 : b+=((uint32)k[5])<<8;
+ case 5 : b+=k[4];
+ case 4 : a+=((uint32)k[3])<<24;
+ case 3 : a+=((uint32)k[2])<<16;
+ case 2 : a+=((uint32)k[1])<<8;
+ case 1 : a+=k[0];
+ break;
+ case 0 : return UInt32GetDatum(c);
+ }
+ }
+
+ final(a,b,c);
+ return UInt32GetDatum(c);
+ }
+
+
+ /*----------
+ * hashlittle2: return 2 32-bit hash values
+ *
+ * This is identical to hashlittle(), except it returns two 32-bit hash
+ * values instead of just one. This is good enough for hash table
+ * lookup with 2^^64 buckets, or if you want a second hash if you're not
+ * happy with the first, or if you want a probably-unique 64-bit ID for
+ * the key. *pc is better mixed than *pb, so use *pc first. If you want
+ * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)".
+ *----------
+ */
+ void hashlittle2(
+ const void *key, /* the key to hash */
+ size_t length, /* length of the key */
+ uint32 *pc, /* IN: primary initval, OUT: primary hash */
+ uint32 *pb) /* IN: secondary initval, OUT: secondary hash */
+ {
+ uint32 a,b,c; /* internal state */
+ union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
+
+ /* Set up the internal state */
+ a = b = c = 0xdeadbeef + ((uint32)length) + *pc;
+ c += *pb;
+
+ u.ptr = key;
+ if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
+ const uint32 *k = (const uint32 *)key; /* read 32-bit chunks */
+ #ifdef VALGRIND
+ const uint8 *k8;
+ #endif
+
+ /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
+ while (length > 12)
+ {
+ a += k[0];
+ b += k[1];
+ c += k[2];
+ mix(a,b,c);
+ length -= 12;
+ k += 3;
+ }
+
+ /*----------------------------- handle the last (probably partial) block */
+ /*
+ * "k[2]&0xffffff" actually reads beyond the end of the string, but
+ * then masks off the part it's not allowed to read. Because the
+ * string is aligned, the masked-off tail is in the same word as the
+ * rest of the string. Every machine with memory protection I've seen
+ * does it on word boundaries, so is OK with this. But VALGRIND will
+ * still catch it and complain. The masking trick does make the hash
+ * noticably faster for short strings (like English words).
+ */
+ #ifndef VALGRIND
+
+ switch(length)
+ {
+ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
+ case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
+ case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
+ case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
+ case 8 : b+=k[1]; a+=k[0]; break;
+ case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
+ case 6 : b+=k[1]&0xffff; a+=k[0]; break;
+ case 5 : b+=k[1]&0xff; a+=k[0]; break;
+ case 4 : a+=k[0]; break;
+ case 3 : a+=k[0]&0xffffff; break;
+ case 2 : a+=k[0]&0xffff; break;
+ case 1 : a+=k[0]&0xff; break;
+ case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
+ }
+
+ #else /* make valgrind happy */
+
+ k8 = (const uint8 *)k;
+ switch(length)
+ {
+ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
+ case 11: c+=((uint32)k8[10])<<16; /* fall through */
+ case 10: c+=((uint32)k8[9])<<8; /* fall through */
+ case 9 : c+=k8[8]; /* fall through */
+ case 8 : b+=k[1]; a+=k[0]; break;
+ case 7 : b+=((uint32)k8[6])<<16; /* fall through */
+ case 6 : b+=((uint32)k8[5])<<8; /* fall through */
+ case 5 : b+=k8[4]; /* fall through */
+ case 4 : a+=k[0]; break;
+ case 3 : a+=((uint32)k8[2])<<16; /* fall through */
+ case 2 : a+=((uint32)k8[1])<<8; /* fall through */
+ case 1 : a+=k8[0]; break;
+ case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
+ }
+
+ #endif /* !valgrind */
+
+ } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
+ const uint16 *k = (const uint16 *)key; /* read 16-bit chunks */
+ const uint8 *k8;
+
+ /*--------------- all but last block: aligned reads and different mixing */
+ while (length > 12)
+ {
+ a += k[0] + (((uint32)k[1])<<16);
+ b += k[2] + (((uint32)k[3])<<16);
+ c += k[4] + (((uint32)k[5])<<16);
+ mix(a,b,c);
+ length -= 12;
+ k += 6;
+ }
+
+ /*----------------------------- handle the last (probably partial) block */
+ k8 = (const uint8 *)k;
+ switch(length)
+ {
+ case 12: c+=k[4]+(((uint32)k[5])<<16);
+ b+=k[2]+(((uint32)k[3])<<16);
+ a+=k[0]+(((uint32)k[1])<<16);
+ break;
+ case 11: c+=((uint32)k8[10])<<16; /* fall through */
+ case 10: c+=k[4];
+ b+=k[2]+(((uint32)k[3])<<16);
+ a+=k[0]+(((uint32)k[1])<<16);
+ break;
+ case 9 : c+=k8[8]; /* fall through */
+ case 8 : b+=k[2]+(((uint32)k[3])<<16);
+ a+=k[0]+(((uint32)k[1])<<16);
+ break;
+ case 7 : b+=((uint32)k8[6])<<16; /* fall through */
+ case 6 : b+=k[2];
+ a+=k[0]+(((uint32)k[1])<<16);
+ break;
+ case 5 : b+=k8[4]; /* fall through */
+ case 4 : a+=k[0]+(((uint32)k[1])<<16);
+ break;
+ case 3 : a+=((uint32)k8[2])<<16; /* fall through */
+ case 2 : a+=k[0];
+ break;
+ case 1 : a+=k8[0];
+ break;
+ case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
+ }
+
+ } else { /* need to read the key one byte at a time */
+ const uint8 *k = (const uint8 *)key;
+
+ /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
+ while (length > 12)
+ {
+ a += k[0];
+ a += ((uint32)k[1])<<8;
+ a += ((uint32)k[2])<<16;
+ a += ((uint32)k[3])<<24;
+ b += k[4];
+ b += ((uint32)k[5])<<8;
+ b += ((uint32)k[6])<<16;
+ b += ((uint32)k[7])<<24;
+ c += k[8];
+ c += ((uint32)k[9])<<8;
+ c += ((uint32)k[10])<<16;
+ c += ((uint32)k[11])<<24;
+ mix(a,b,c);
+ length -= 12;
+ k += 12;
+ }
+
+ /*-------------------------------- last block: affect all 32 bits of (c) */
+ switch(length) /* all the case statements fall through */
+ {
+ case 12: c+=((uint32)k[11])<<24;
+ case 11: c+=((uint32)k[10])<<16;
+ case 10: c+=((uint32)k[9])<<8;
+ case 9 : c+=k[8];
+ case 8 : b+=((uint32)k[7])<<24;
+ case 7 : b+=((uint32)k[6])<<16;
+ case 6 : b+=((uint32)k[5])<<8;
+ case 5 : b+=k[4];
+ case 4 : a+=((uint32)k[3])<<24;
+ case 3 : a+=((uint32)k[2])<<16;
+ case 2 : a+=((uint32)k[1])<<8;
+ case 1 : a+=k[0];
+ break;
+ case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
+ }
+ }
+
+ final(a,b,c);
+ *pc=c; *pb=b;
+ }
+
+
+
+ /*----------
+ * hashbig():
+ * This is the same as hashword() on big-endian machines. It is different
+ * from hashlittle() on all machines. hashbig() takes advantage of
+ * big-endian byte ordering.
+ *----------
+ */
+ Datum
+ hashbig( const void *key, size_t length, uint32 initval)
+ {
+ uint32 a,b,c;
+ union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */
+
+ /* Set up the internal state */
+ a = b = c = 0xdeadbeef + ((uint32)length) + initval;
+
+ u.ptr = key;
+ if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) {
+ const uint32 *k = (const uint32 *)key; /* read 32-bit chunks */
+ #ifdef VALGRIND
+ const uint8 *k8;
+ #endif
+
+ /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
+ while (length > 12)
+ {
+ a += k[0];
+ b += k[1];
+ c += k[2];
+ mix(a,b,c);
+ length -= 12;
+ k += 3;
+ }
+
+ /*----------------------------- handle the last (probably partial) block */
+ /*
+ * "k[2]<<8" actually reads beyond the end of the string, but
+ * then shifts out the part it's not allowed to read. Because the
+ * string is aligned, the illegal read is in the same word as the
+ * rest of the string. Every machine with memory protection I've seen
+ * does it on word boundaries, so is OK with this. But VALGRIND will
+ * still catch it and complain. The masking trick does make the hash
+ * noticably faster for short strings (like English words).
+ */
+ #ifndef VALGRIND
+
+ switch(length)
+ {
+ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
+ case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break;
+ case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break;
+ case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break;
+ case 8 : b+=k[1]; a+=k[0]; break;
+ case 7 : b+=k[1]&0xffffff00; a+=k[0]; break;
+ case 6 : b+=k[1]&0xffff0000; a+=k[0]; break;
+ case 5 : b+=k[1]&0xff000000; a+=k[0]; break;
+ case 4 : a+=k[0]; break;
+ case 3 : a+=k[0]&0xffffff00; break;
+ case 2 : a+=k[0]&0xffff0000; break;
+ case 1 : a+=k[0]&0xff000000; break;
+ case 0 : return UInt32GetDatum(c); /* zero length requires no mixing */
+ }
+
+ #else /* make valgrind happy */
+
+ k8 = (const uint8 *)k;
+ switch(length) /* all the case statements fall through */
+ {
+ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
+ case 11: c+=((uint32)k8[10])<<8; /* fall through */
+ case 10: c+=((uint32)k8[9])<<16; /* fall through */
+ case 9 : c+=((uint32)k8[8])<<24; /* fall through */
+ case 8 : b+=k[1]; a+=k[0]; break;
+ case 7 : b+=((uint32)k8[6])<<8; /* fall through */
+ case 6 : b+=((uint32)k8[5])<<16; /* fall through */
+ case 5 : b+=((uint32)k8[4])<<24; /* fall through */
+ case 4 : a+=k[0]; break;
+ case 3 : a+=((uint32)k8[2])<<8; /* fall through */
+ case 2 : a+=((uint32)k8[1])<<16; /* fall through */
+ case 1 : a+=((uint32)k8[0])<<24; break;
+ case 0 : return UInt32GetDatum(c);
+ }
+
+ #endif /* !VALGRIND */
+
+ } else { /* need to read the key one byte at a time */
+ const uint8 *k = (const uint8 *)key;
+
+ /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
+ while (length > 12)
+ {
+ a += ((uint32)k[0])<<24;
+ a += ((uint32)k[1])<<16;
+ a += ((uint32)k[2])<<8;
+ a += ((uint32)k[3]);
+ b += ((uint32)k[4])<<24;
+ b += ((uint32)k[5])<<16;
+ b += ((uint32)k[6])<<8;
+ b += ((uint32)k[7]);
+ c += ((uint32)k[8])<<24;
+ c += ((uint32)k[9])<<16;
+ c += ((uint32)k[10])<<8;
+ c += ((uint32)k[11]);
+ mix(a,b,c);
+ length -= 12;
+ k += 12;
+ }
+
+ /*-------------------------------- last block: affect all 32 bits of (c) */
+ switch(length) /* all the case statements fall through */
+ {
+ case 12: c+=k[11];
+ case 11: c+=((uint32)k[10])<<8;
+ case 10: c+=((uint32)k[9])<<16;
+ case 9 : c+=((uint32)k[8])<<24;
+ case 8 : b+=k[7];
+ case 7 : b+=((uint32)k[6])<<8;
+ case 6 : b+=((uint32)k[5])<<16;
+ case 5 : b+=((uint32)k[4])<<24;
+ case 4 : a+=k[3];
+ case 3 : a+=((uint32)k[2])<<8;
+ case 2 : a+=((uint32)k[1])<<16;
+ case 1 : a+=((uint32)k[0])<<24;
+ break;
+ case 0 : return UInt32GetDatum(c);
+ }
+ }
+
+ final(a,b,c);
+ return UInt32GetDatum(c);
+ }
+
+ /*----------
+ * hashbig2: return 2 32-bit hash values
+ *
+ * This is identical to hashbig(), except it returns two 32-bit hash
+ * values instead of just one. This is good enough for hash table
+ * lookup with 2^^64 buckets, or if you want a second hash if you're not
+ * happy with the first, or if you want a probably-unique 64-bit ID for
+ * the key. *pc is better mixed than *pb, so use *pc first. If you want
+ * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)".
+ *----------
+ */
+ void hashbig2(
+ const void *key, /* the key to hash */
+ size_t length, /* length of the key */
+ uint32 *pc, /* IN: primary initval, OUT: primary hash */
+ uint32 *pb) /* IN: secondary initval, OUT: secondary hash */
+ {
+ uint32 a,b,c;
+ union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */
+
+ /* Set up the internal state */
+ a = b = c = 0xdeadbeef + ((uint32)length) + *pc;
+ c += *pb;
+
+ u.ptr = key;
+ if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) {
+ const uint32 *k = (const uint32 *)key; /* read 32-bit chunks */
+ #ifdef VALGRIND
+ const uint8 *k8;
+ #endif
+
+ /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
+ while (length > 12)
+ {
+ a += k[0];
+ b += k[1];
+ c += k[2];
+ mix(a,b,c);
+ length -= 12;
+ k += 3;
+ }
+
+ /*----------------------------- handle the last (probably partial) block */
+ /*
+ * "k[2]<<8" actually reads beyond the end of the string, but
+ * then shifts out the part it's not allowed to read. Because the
+ * string is aligned, the illegal read is in the same word as the
+ * rest of the string. Every machine with memory protection I've seen
+ * does it on word boundaries, so is OK with this. But VALGRIND will
+ * still catch it and complain. The masking trick does make the hash
+ * noticably faster for short strings (like English words).
+ */
+ #ifndef VALGRIND
+
+ switch(length)
+ {
+ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
+ case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break;
+ case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break;
+ case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break;
+ case 8 : b+=k[1]; a+=k[0]; break;
+ case 7 : b+=k[1]&0xffffff00; a+=k[0]; break;
+ case 6 : b+=k[1]&0xffff0000; a+=k[0]; break;
+ case 5 : b+=k[1]&0xff000000; a+=k[0]; break;
+ case 4 : a+=k[0]; break;
+ case 3 : a+=k[0]&0xffffff00; break;
+ case 2 : a+=k[0]&0xffff0000; break;
+ case 1 : a+=k[0]&0xff000000; break;
+ case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
+ }
+
+ #else /* make valgrind happy */
+
+ k8 = (const uint8 *)k;
+ switch(length) /* all the case statements fall through */
+ {
+ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
+ case 11: c+=((uint32)k8[10])<<8; /* fall through */
+ case 10: c+=((uint32)k8[9])<<16; /* fall through */
+ case 9 : c+=((uint32)k8[8])<<24; /* fall through */
+ case 8 : b+=k[1]; a+=k[0]; break;
+ case 7 : b+=((uint32)k8[6])<<8; /* fall through */
+ case 6 : b+=((uint32)k8[5])<<16; /* fall through */
+ case 5 : b+=((uint32)k8[4])<<24; /* fall through */
+ case 4 : a+=k[0]; break;
+ case 3 : a+=((uint32)k8[2])<<8; /* fall through */
+ case 2 : a+=((uint32)k8[1])<<16; /* fall through */
+ case 1 : a+=((uint32)k8[0])<<24; break;
+ case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
+ }
+
+ #endif /* !VALGRIND */
+
+ } else { /* need to read the key one byte at a time */
+ const uint8 *k = (const uint8 *)key;
+
+ /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
+ while (length > 12)
+ {
+ a += ((uint32)k[0])<<24;
+ a += ((uint32)k[1])<<16;
+ a += ((uint32)k[2])<<8;
+ a += ((uint32)k[3]);
+ b += ((uint32)k[4])<<24;
+ b += ((uint32)k[5])<<16;
+ b += ((uint32)k[6])<<8;
+ b += ((uint32)k[7]);
+ c += ((uint32)k[8])<<24;
+ c += ((uint32)k[9])<<16;
+ c += ((uint32)k[10])<<8;
+ c += ((uint32)k[11]);
+ mix(a,b,c);
+ length -= 12;
+ k += 12;
+ }
+
+ /*-------------------------------- last block: affect all 32 bits of (c) */
+ switch(length) /* all the case statements fall through */
+ {
+ case 12: c+=k[11];
+ case 11: c+=((uint32)k[10])<<8;
+ case 10: c+=((uint32)k[9])<<16;
+ case 9 : c+=((uint32)k[8])<<24;
+ case 8 : b+=k[7];
+ case 7 : b+=((uint32)k[6])<<8;
+ case 6 : b+=((uint32)k[5])<<16;
+ case 5 : b+=((uint32)k[4])<<24;
+ case 4 : a+=k[3];
+ case 3 : a+=((uint32)k[2])<<8;
+ case 2 : a+=((uint32)k[1])<<16;
+ case 1 : a+=((uint32)k[0])<<24;
+ break;
+ case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
+ }
+ }
+
+ final(a,b,c);
+ *pc=c; *pb=b;
+ }
+
/*
* hash_any() -- hash a variable-length key into a 32-bit value
* k : the key (the unaligned variable-length array of bytes)
***************
*** 239,298 ****
Datum
hash_any(register const unsigned char *k, register int keylen)
{
! register uint32 a,
! b,
! c,
! len;
!
! /* Set up the internal state */
! len = keylen;
! a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
! c = 3923095; /* initialize with an arbitrary value */
!
! /* handle most of the key */
! while (len >= 12)
! {
! a += (k[0] + ((uint32) k[1] << 8) + ((uint32) k[2] << 16) + ((uint32) k[3] << 24));
! b += (k[4] + ((uint32) k[5] << 8) + ((uint32) k[6] << 16) + ((uint32) k[7] << 24));
! c += (k[8] + ((uint32) k[9] << 8) + ((uint32) k[10] << 16) + ((uint32) k[11] << 24));
! mix(a, b, c);
! k += 12;
! len -= 12;
! }
!
! /* handle the last 11 bytes */
! c += keylen;
! switch (len) /* all the case statements fall through */
! {
! case 11:
! c += ((uint32) k[10] << 24);
! case 10:
! c += ((uint32) k[9] << 16);
! case 9:
! c += ((uint32) k[8] << 8);
! /* the first byte of c is reserved for the length */
! case 8:
! b += ((uint32) k[7] << 24);
! case 7:
! b += ((uint32) k[6] << 16);
! case 6:
! b += ((uint32) k[5] << 8);
! case 5:
! b += k[4];
! case 4:
! a += ((uint32) k[3] << 24);
! case 3:
! a += ((uint32) k[2] << 16);
! case 2:
! a += ((uint32) k[1] << 8);
! case 1:
! a += k[0];
! /* case 0: nothing left to add */
! }
! mix(a, b, c);
!
! /* report the result */
! return UInt32GetDatum(c);
}
/*
--- 1069,1079 ----
Datum
hash_any(register const unsigned char *k, register int keylen)
{
! #ifndef WORDS_BIGENDIAN
! return hashlittle(k, keylen, 3923095);
! #else
! return hashbig(k, keylen, 3923095);
! #endif
}
/*
***************
*** 305,316 ****
Datum
hash_uint32(uint32 k)
{
! register uint32 a,
! b,
! c;
! a = 0x9e3779b9 + k;
! b = 0x9e3779b9;
c = 3923095 + (uint32) sizeof(uint32);
mix(a, b, c);
--- 1086,1095 ----
Datum
hash_uint32(uint32 k)
{
! register uint32 a, b, c;
! a = 0xdeadbeef + k;
! b = 0xdeadbeef;
c = 3923095 + (uint32) sizeof(uint32);
mix(a, b, c);